3.7.100 \(\int \frac {x^2 (1+x)^{3/2}}{\sqrt {1-x}} \, dx\)

Optimal. Leaf size=88 \[ -\frac {1}{4} \sqrt {1-x} x (x+1)^{5/2}-\frac {1}{6} \sqrt {1-x} (x+1)^{5/2}-\frac {7}{24} \sqrt {1-x} (x+1)^{3/2}-\frac {7}{8} \sqrt {1-x} \sqrt {x+1}+\frac {7}{8} \sin ^{-1}(x) \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 88, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {90, 80, 50, 41, 216} \begin {gather*} -\frac {1}{4} \sqrt {1-x} x (x+1)^{5/2}-\frac {1}{6} \sqrt {1-x} (x+1)^{5/2}-\frac {7}{24} \sqrt {1-x} (x+1)^{3/2}-\frac {7}{8} \sqrt {1-x} \sqrt {x+1}+\frac {7}{8} \sin ^{-1}(x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^2*(1 + x)^(3/2))/Sqrt[1 - x],x]

[Out]

(-7*Sqrt[1 - x]*Sqrt[1 + x])/8 - (7*Sqrt[1 - x]*(1 + x)^(3/2))/24 - (Sqrt[1 - x]*(1 + x)^(5/2))/6 - (Sqrt[1 -
x]*x*(1 + x)^(5/2))/4 + (7*ArcSin[x])/8

Rule 41

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(a*c + b*d*x^2)^m, x] /; FreeQ[{a, b
, c, d, m}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 90

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a + b*
x)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 3)), x] + Dist[1/(d*f*(n + p + 3)), Int[(c + d*x)^n*(e +
 f*x)^p*Simp[a^2*d*f*(n + p + 3) - b*(b*c*e + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*(n + p + 4) - b*(d*e*(
n + 2) + c*f*(p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 3, 0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin {align*} \int \frac {x^2 (1+x)^{3/2}}{\sqrt {1-x}} \, dx &=-\frac {1}{4} \sqrt {1-x} x (1+x)^{5/2}-\frac {1}{4} \int \frac {(-1-2 x) (1+x)^{3/2}}{\sqrt {1-x}} \, dx\\ &=-\frac {1}{6} \sqrt {1-x} (1+x)^{5/2}-\frac {1}{4} \sqrt {1-x} x (1+x)^{5/2}+\frac {7}{12} \int \frac {(1+x)^{3/2}}{\sqrt {1-x}} \, dx\\ &=-\frac {7}{24} \sqrt {1-x} (1+x)^{3/2}-\frac {1}{6} \sqrt {1-x} (1+x)^{5/2}-\frac {1}{4} \sqrt {1-x} x (1+x)^{5/2}+\frac {7}{8} \int \frac {\sqrt {1+x}}{\sqrt {1-x}} \, dx\\ &=-\frac {7}{8} \sqrt {1-x} \sqrt {1+x}-\frac {7}{24} \sqrt {1-x} (1+x)^{3/2}-\frac {1}{6} \sqrt {1-x} (1+x)^{5/2}-\frac {1}{4} \sqrt {1-x} x (1+x)^{5/2}+\frac {7}{8} \int \frac {1}{\sqrt {1-x} \sqrt {1+x}} \, dx\\ &=-\frac {7}{8} \sqrt {1-x} \sqrt {1+x}-\frac {7}{24} \sqrt {1-x} (1+x)^{3/2}-\frac {1}{6} \sqrt {1-x} (1+x)^{5/2}-\frac {1}{4} \sqrt {1-x} x (1+x)^{5/2}+\frac {7}{8} \int \frac {1}{\sqrt {1-x^2}} \, dx\\ &=-\frac {7}{8} \sqrt {1-x} \sqrt {1+x}-\frac {7}{24} \sqrt {1-x} (1+x)^{3/2}-\frac {1}{6} \sqrt {1-x} (1+x)^{5/2}-\frac {1}{4} \sqrt {1-x} x (1+x)^{5/2}+\frac {7}{8} \sin ^{-1}(x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 51, normalized size = 0.58 \begin {gather*} -\frac {1}{24} \sqrt {1-x^2} \left (6 x^3+16 x^2+21 x+32\right )-\frac {7}{4} \sin ^{-1}\left (\frac {\sqrt {1-x}}{\sqrt {2}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(1 + x)^(3/2))/Sqrt[1 - x],x]

[Out]

-1/24*(Sqrt[1 - x^2]*(32 + 21*x + 16*x^2 + 6*x^3)) - (7*ArcSin[Sqrt[1 - x]/Sqrt[2]])/4

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.09, size = 100, normalized size = 1.14 \begin {gather*} -\frac {\sqrt {1-x} \left (\frac {21 (1-x)^3}{(x+1)^3}+\frac {77 (1-x)^2}{(x+1)^2}+\frac {83 (1-x)}{x+1}+75\right )}{12 \sqrt {x+1} \left (\frac {1-x}{x+1}+1\right )^4}-\frac {7}{4} \tan ^{-1}\left (\frac {\sqrt {1-x}}{\sqrt {x+1}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(x^2*(1 + x)^(3/2))/Sqrt[1 - x],x]

[Out]

-1/12*(Sqrt[1 - x]*(75 + (21*(1 - x)^3)/(1 + x)^3 + (77*(1 - x)^2)/(1 + x)^2 + (83*(1 - x))/(1 + x)))/(Sqrt[1
+ x]*(1 + (1 - x)/(1 + x))^4) - (7*ArcTan[Sqrt[1 - x]/Sqrt[1 + x]])/4

________________________________________________________________________________________

fricas [A]  time = 1.15, size = 52, normalized size = 0.59 \begin {gather*} -\frac {1}{24} \, {\left (6 \, x^{3} + 16 \, x^{2} + 21 \, x + 32\right )} \sqrt {x + 1} \sqrt {-x + 1} - \frac {7}{4} \, \arctan \left (\frac {\sqrt {x + 1} \sqrt {-x + 1} - 1}{x}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(1+x)^(3/2)/(1-x)^(1/2),x, algorithm="fricas")

[Out]

-1/24*(6*x^3 + 16*x^2 + 21*x + 32)*sqrt(x + 1)*sqrt(-x + 1) - 7/4*arctan((sqrt(x + 1)*sqrt(-x + 1) - 1)/x)

________________________________________________________________________________________

giac [A]  time = 1.08, size = 46, normalized size = 0.52 \begin {gather*} -\frac {1}{24} \, {\left ({\left (2 \, {\left (3 \, x + 2\right )} {\left (x + 1\right )} + 7\right )} {\left (x + 1\right )} + 21\right )} \sqrt {x + 1} \sqrt {-x + 1} + \frac {7}{4} \, \arcsin \left (\frac {1}{2} \, \sqrt {2} \sqrt {x + 1}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(1+x)^(3/2)/(1-x)^(1/2),x, algorithm="giac")

[Out]

-1/24*((2*(3*x + 2)*(x + 1) + 7)*(x + 1) + 21)*sqrt(x + 1)*sqrt(-x + 1) + 7/4*arcsin(1/2*sqrt(2)*sqrt(x + 1))

________________________________________________________________________________________

maple [A]  time = 0.01, size = 80, normalized size = 0.91 \begin {gather*} \frac {\sqrt {x +1}\, \sqrt {-x +1}\, \left (-6 \sqrt {-x^{2}+1}\, x^{3}-16 \sqrt {-x^{2}+1}\, x^{2}-21 \sqrt {-x^{2}+1}\, x +21 \arcsin \relax (x )-32 \sqrt {-x^{2}+1}\right )}{24 \sqrt {-x^{2}+1}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(x+1)^(3/2)/(-x+1)^(1/2),x)

[Out]

1/24*(x+1)^(1/2)*(-x+1)^(1/2)*(-6*(-x^2+1)^(1/2)*x^3-16*(-x^2+1)^(1/2)*x^2-21*(-x^2+1)^(1/2)*x+21*arcsin(x)-32
*(-x^2+1)^(1/2))/(-x^2+1)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 2.07, size = 56, normalized size = 0.64 \begin {gather*} -\frac {1}{4} \, \sqrt {-x^{2} + 1} x^{3} - \frac {2}{3} \, \sqrt {-x^{2} + 1} x^{2} - \frac {7}{8} \, \sqrt {-x^{2} + 1} x - \frac {4}{3} \, \sqrt {-x^{2} + 1} + \frac {7}{8} \, \arcsin \relax (x) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(1+x)^(3/2)/(1-x)^(1/2),x, algorithm="maxima")

[Out]

-1/4*sqrt(-x^2 + 1)*x^3 - 2/3*sqrt(-x^2 + 1)*x^2 - 7/8*sqrt(-x^2 + 1)*x - 4/3*sqrt(-x^2 + 1) + 7/8*arcsin(x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^2\,{\left (x+1\right )}^{3/2}}{\sqrt {1-x}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*(x + 1)^(3/2))/(1 - x)^(1/2),x)

[Out]

int((x^2*(x + 1)^(3/2))/(1 - x)^(1/2), x)

________________________________________________________________________________________

sympy [A]  time = 136.73, size = 240, normalized size = 2.73 \begin {gather*} 2 \left (\begin {cases} - \frac {x \sqrt {1 - x} \sqrt {x + 1}}{4} - \sqrt {1 - x} \sqrt {x + 1} + \frac {3 \operatorname {asin}{\left (\frac {\sqrt {2} \sqrt {x + 1}}{2} \right )}}{2} & \text {for}\: x \geq -1 \wedge x < 1 \end {cases}\right ) - 4 \left (\begin {cases} - \frac {3 x \sqrt {1 - x} \sqrt {x + 1}}{4} + \frac {\left (1 - x\right )^{\frac {3}{2}} \left (x + 1\right )^{\frac {3}{2}}}{6} - 2 \sqrt {1 - x} \sqrt {x + 1} + \frac {5 \operatorname {asin}{\left (\frac {\sqrt {2} \sqrt {x + 1}}{2} \right )}}{2} & \text {for}\: x \geq -1 \wedge x < 1 \end {cases}\right ) + 2 \left (\begin {cases} - \frac {7 x \sqrt {1 - x} \sqrt {x + 1}}{4} + \frac {2 \left (1 - x\right )^{\frac {3}{2}} \left (x + 1\right )^{\frac {3}{2}}}{3} + \frac {\sqrt {1 - x} \sqrt {x + 1} \left (- 5 x - 2 \left (x + 1\right )^{3} + 6 \left (x + 1\right )^{2} - 4\right )}{16} - 4 \sqrt {1 - x} \sqrt {x + 1} + \frac {35 \operatorname {asin}{\left (\frac {\sqrt {2} \sqrt {x + 1}}{2} \right )}}{8} & \text {for}\: x \geq -1 \wedge x < 1 \end {cases}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(1+x)**(3/2)/(1-x)**(1/2),x)

[Out]

2*Piecewise((-x*sqrt(1 - x)*sqrt(x + 1)/4 - sqrt(1 - x)*sqrt(x + 1) + 3*asin(sqrt(2)*sqrt(x + 1)/2)/2, (x >= -
1) & (x < 1))) - 4*Piecewise((-3*x*sqrt(1 - x)*sqrt(x + 1)/4 + (1 - x)**(3/2)*(x + 1)**(3/2)/6 - 2*sqrt(1 - x)
*sqrt(x + 1) + 5*asin(sqrt(2)*sqrt(x + 1)/2)/2, (x >= -1) & (x < 1))) + 2*Piecewise((-7*x*sqrt(1 - x)*sqrt(x +
 1)/4 + 2*(1 - x)**(3/2)*(x + 1)**(3/2)/3 + sqrt(1 - x)*sqrt(x + 1)*(-5*x - 2*(x + 1)**3 + 6*(x + 1)**2 - 4)/1
6 - 4*sqrt(1 - x)*sqrt(x + 1) + 35*asin(sqrt(2)*sqrt(x + 1)/2)/8, (x >= -1) & (x < 1)))

________________________________________________________________________________________